Journal of Organometallic Chemistry, 373 (1989) C17–C20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20176PC

Preliminary communication

Synthesis, crystal and molecular structure of the "slipped" sandwich complex $[Ni(\eta^5 \cdot P_3C_2R_2)(\eta^3 \cdot P_2C_3R_3)]$ (R = Bu^t)

Rainer Bartsch, Peter B. Hitchcock and John F. Nixon *

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 9QJ, Sussex (U.K.) (Received May 17th, 1989)

Abstract

The synthesis of the novel "slipped" sandwich compound $[Ni(\eta^5-P_3C_2R_2)(\eta^3-P_2C_3R_3)]$ (R = Bu^t) is described. The mode of attachment of the $P_3C_2R_2$ and $P_2C_3R_3$ rings has been determined by NMR spectroscopy and a single crystal X-ray diffraction study.

The field of organotransition metal chemistry involving unsaturated organic ligands in which CH fragments are replaced by P is rapidly developing [1]. Previously [2] we have described syntheses and full structural characterisation of the 18e sandwich complexes $[Fe(\eta^5-P_3C_2Bu_2^t)_2]$ (I) and $[Fe(\eta^5-P_3C_2Bu_2^t)(\eta^5-P_2C_3Bu_3^t)]$ (II) and more recently [3] the 16e paramagnetic compound $[Cr(\eta^5-P_3C_2Bu_2^t)_2]$ (III).

Attempts to synthesise the 19e system $[Co(\eta^{5}-P_{3}C_{2}Bu_{2}^{t})_{2}]$ led instead [4] to the 18e diamagnetic $[Co(\eta^{5}-P_{3}C_{2}Bu_{2}^{t})(\eta^{4}-P_{3}C_{2}Bu_{2}^{t}H)]$ (IV).

We now report that treatment of a mixture of $Li(P_3C_2Bu_2^t)$ and $Li(P_2C_3Bu_3^t)$ with [NiBr₂(monoglyme)₂] in monoglyme affords a low yield (ca. 5%) of the purple nickel complex [Ni(P₃C₂Bu₂^t)(P₂C₃Bu₃^t)] (V) *, which exhibits the ³¹P{¹H} NMR spectrum shown in Figure 1. No evidence was obtained for the formation of the paramagnetic 20e sandwich complexes [Ni(η^5 -P₃C₂Bu₂^t)₂], [Ni(η^3 -P₂C₃Bu₃^t)₂] or [Ni(η^5 -P₂C₃Bu₃^t)(η^5 -P₃C₂Bu₂^t)]. The sharpness of the ³¹P{¹H} NMR spectra of V, which was fully analysed as an A₂BC₂ spin system (Figure 1), was indicative of a diamagnetic 18e complex, suggesting that one ring is η^5 -ligated and the other is η^3 -bonded to the metal as in Va or Vb. The low inter-ring coupling constant ²J_{AC} (10.9 Hz) compared with the large value of ca. 50 Hz observed in I where the rings

^{*} Preparation of V. NiBr₂(dme)₂ (398 mg, 1 mmol) was added to 7 ml of a solution containing $Li[(C_2Bu_2^{t}P_3)]/Li[(C_3Bu_3^{t}P_2)]$ (1 mmol) in monoglyme and the mixture stirred at room temperature for 16 h. After removal of the solvent the residue was extracted with hexane and fractionated by column chromatography (kieselgel/hexane). V was obtained as purple solid (5% yield).

C18

Fig. 1. Observed (a) and simulated (b) ${}^{31}P{}^{1}H{}$ NMR spectrum of V.

are eclipsed also suggested η^5 -, η^3 -ligation of the two rings. ³¹P chemical shift data * supported structure Va, which does not have the localised P=P double bond in the ring.

The mass spectrum of V exhibits a parent ion at m/e = 558 and ions corresponding to the stepwise loss of the three Bu^tCP fragments. Of particular significance is the observation of the strongest peak at m/e = 420 corresponding to the $[Ni(P_3C_2Bu_2^t)(P_2CBu^t)]^+$ ion which arises from the loss of $Bu_2^tC_2$ from V. This strongly suggested that the $(P_2C_3Bu_3^t)$ ring is η^3 -ligated to the metal as in Va.

^{* &}lt;sup>31</sup>P NMR: $\delta(P^A)$ 115.0, $\delta(P^B)$ 153.2, $\delta(P^C)$ 111.4 ppm (rel. H₃PO₄); J_{AB} 51.2 Hz, J_{AC} 10.9 Hz, J_{BC} 2.9 Hz, ¹H NMR δ 1.18, 1.30, 1.54 ppm.

Fig. 2. Two views of the molecular structure of V.

Confirmation of the molecular structure came from a single crystal X-ray diffraction study (See Fig. 2) * where the planar $(P_3C_2Bu_2^t)$ ring is η^5 -bonded to the metal whereas the $(P_2C_3Bu_3^t)$ ring is η^3 -ligated and bent along the P(4)-P(5) vector so that the C=C fragment does not interact with the nickel atom.

^{*} Crystal data: $C_{25}H_{45}NiP_5$, M = 559.2, monoclinic, space group $P2_1/n$, a 11.902(4), b 18.777(3), c 27.341(9) Å, β 99.61(3)°, Z = 8. D_c 1.23 g cm⁻³. The structure was solved by direct methods based on 7868 reflections collected on an Enraf-Nonius CAD4 diffractometer using mono-chromated Mo- K_{α} radiation, λ 0.71069 Å, μ 9.2 cm⁻¹, of which 2464 having $|F^2| > 3\sigma(F^2)$ were used in the refinement. The final residuals were R = 0.136, R' = 0.193.

To our knowledge this is the first example of a complex containing one normal and one "slipped" ring in a simple metal sandwich complex containing no other attendant ligands [5,6]. The analogous 20e nickelocene compound has both C_5H_5 rings ligated in an η^5 -fashion [7–9]. The preference in V by the nickel for the P–C–P rather than the C–C–P moiety within the five membered ring is in accord with our observations on η^2 -monophosphaallene $R_2C=C=PR$ ($R = C_6H_2Bu_3^{t}$), complexes of palladium(0) and platinum(0) where it is the P=C bond rather than the C=C bond that interacts with the metal atom [1,10].

The non-formation of 19e and 20e metal complexes with the unsaturated five membered ring systems containing phosphorus presumably reflects the higher energy of the antibonding molecular orbitals in the $[M(\eta^5-P_3C_2Bu_2^t)_2]$ and $[M(\eta^5-P_3C_2Bu_2^t)(\eta^5-P_2C_3Bu_3^t)]$ complexes compared with those in their $[M(\eta^5-C_5H_5)_2]$ analogues.

Acknowledgements. We thank the SERC for financial support for this work, Mr. A. Greenway for recording the mass spectrum and Dr. A.G. Avent for simulating the ³¹P NMR spectrum.

References

- 1 J.F. Nixon, Chem. Rev., 88 (1988) 1327 and ref. therein.
- 2 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Chem. Soc. Chem. Commun., (1987) 1146.
- 3 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Organomet. Chem., 356 (1988) C1.
- 4 R. Bartsch, P.B. Hitchcock and J.F Nixon, J. Chem. Soc., Chem. Commun., (1988) 819.
- 5 J.M. O'Connor and C.P. Casey, Chem. Rev., 87 (1987) 307 and ref. therein.
- 6 R.M. Kowaleski, A.L. Rheingold, W.C. Trogler and F. Basolo, J. Am. Chem. Soc., 108 (1986) 2460.
- 7 K.W. Barnett, J. Organomet. Chem., 78 (1974) 139 and ref. therein.
- 8 G. Calvarin and D. Weigel, J. Appl. Cryst., 9 (1976) 212.
- 9 P. Seiler and J.P. Dunitz, Acta Cryst., B, 36 (1980) 2255.
- 10 C.A. Akpan, D. Phil. Thesis, University of Sussex 1986.